Spontaneous Coronary Artery Dissection (SCAD) in Women

Doris Basic MD, MSc, FRCP(C)
Facility Presenter Disclosure

Cardiology for the Non-Cardiologist
Faculty: Doris Basic

Relationships with Financial Sponsors: none
- Grants or Research Support: none
- Speakers Honoraria: none
- Consulting Fees: none
- Patents: none
- Other: none to declare
Disclosure of Financial Support

Cardiology for the Non-Cardiologist has received financial support from Pharmaceutical companies in the form of unrestricted educational grants.

Potential for conflicts of interest: none to declare.
Mitigating Potential Bias

- While we have received unrestricted educational grants from several pharmaceutical companies, most presentations have no mention of specific products and are unrelated to the supporting companies or their products. No specific presentations will be supported or sponsored by a specific company.

- Information on specific products will be presented in the context of an unbiased overview of all products related to treating patients.

- All scientific research related to, reported or used in this CME activity in support or justification of patient care recommendations conforms to the generally accepted standards.

- Clinical medicine is based in evidence that is accepted within the profession.
Overview

- Introduction
- Pathophysiology
- Epidemiology
- Clinical presentation and diagnosis
- Management
- Prognosis
- Pregnancy-related SCAD (P-SCAD)
- Fibromuscular dysplasia (FMD)
- Conclusions
Introduction

- Non-atherosclerotic cause of ACS.

- Important to recognize - *patient characteristics* and *management* differ substantially from typical ACS.
 - Vast majority are women (~90%)
 - Often younger
 - Without or few cardiovascular risk factors
 - Results of revascularization are suboptimal
 - Conservative management is preferred option
Pathophysiology

• Sudden disruption of the coronary artery wall.
 • Separation of intima from vessel wall.
 • Trigger either intimal tear ("inside-out") or bleeding from vasa vasorum ("outside-in") resulting in an intramural hematoma.

• Expansion of hematoma causes propagation of dissection.

• Fragile arterial walls with no atheroma or calcification to limit propagation of dissection.
 • More extensive dissections.
 • Non-affected coronary artery segments appear normal on angiography.
Pathophysiology: sudden disruption of the coronary artery wall
Epidemiology

- True incidence unknown – under diagnosed.
- 2 - 4% of all ACS.
- Important cause of ACS in *young* women.
- Many cases unexplained.

Common identified predisposing factors:
- Pregnancy/Postpartum
- Fibromuscular Dysplasia (FMD)
- Connective tissue disease
- Hormone therapy
Epidemiology

- Potential triggers:
 - Isometric or extreme physical exertion
 - Intense emotional stress
 - Sympathomimetic drugs (e.g. cocaine, amphetamines)
 - Child birth
 - Valsalva (e.g. coughing, retching, vomiting)

- Triggers thought to increase coronary wall shear stress.

- Previously considered primarily a disease of young adults.
 - Described in patients 18–84 years.
 - Mean age in large contemporary series range from 44 to 53 years.

- No ethnic variations reported but there is a strong female predominance.
Key Message

• SCAD has been described across a broad demographic.

• Frequent cause of ACS in young to middle aged women and patients with myocardial infarction in pregnancy or post-partum.
Clinical Presentation and Diagnosis

• Most present with chest pain.
 • Most have elevated hs-TnT.
 • STEMI in 25-55% and NSTEMI in the rest.
 • Minority present with ventricular arrhythmias (3-10%).

Key Message:

• Patients with SCAD usually present with ACS.
• Delayed diagnosis is common - SCAD should be considered in differential of ACS presentations in low risk patients.
Clinical Presentation and Diagnosis

• Diagnosis of SCAD - coronary angiography.
 • LAD most frequently affected.
 • Multivessel dissections common.
 • Dissections more common in mid to distal segments.

• Patients with SCAD have more fragile coronary artery walls.
 • Meticulous technique to avoid catheter-induced dissection and minimize risk of dissection propagation.
Management

- Conservative management preferred in stable patients with SCAD.
 - Most heal spontaneously
- Medical therapy is based upon opinion - no randomized clinical trials.
- Initial treatment similar to standard ACS:
 - Dual antiplatelet therapy
 - Heparin
 - Beta-blockers

Thrombolytics contraindicated - increased risk of bleeding and extension of intramural hematoma.
Management

- **Dual antiplatelet therapy - aspirin and clopidogrel generally accepted but controversial.**
 - Optimal duration of DAPT and subsequent monotherapy with ASA?
 - More potent antiplatelet agents such as ticagrelor and prasugrel not recommended.

- **Heparin** – same concerns about potential adverse impact.

- **Statins** are important for ACS treatment in patients with atheroma, benefit in SCAD unknown and **not recommended**.

- **Beta-blockers recommended.**
 - Potential to reduce arterial shear stress.
 - Facilitate healing?
 - Possibly reduce long-term recurrence?
Management

- **Indications for revascularization:**
 - Complete vessel occlusion
 - Left main involvement
 - *Ongoing ischemia*
 - Hemodynamic instability
 - Sustained ventricular arrhythmias

- **PCI preferred revascularization strategy** but associated with significant challenges.

- **Technical difficulties include:**
 - *Wiring* true lumen
 - Dissection/hematoma extension.
 - Stent placement can result in hematoma propagation and loss of flow.
Management

- Conservative approach to stent implantation preferred.
 - Distal dissections left untreated if good flow.
 - Drug-eluting stents typically used.
 - Increased risk of stent malposition following reabsorption of intramural hematoma.
 - May predispose to late stent thrombosis.
Management

- **CABG in SCAD is generally used as a bail-out strategy.**
 - Left main dissection.
 - PCI unsuccessful or not technically feasible.
 - Rate of emergency CABG for PCI failure is significant.

- In-hospital mortality <2% following CABG for SCAD.

- Follow-up angiographic studies show high rates of graft occlusion.
 - Competitive flow or technical difficulties with distal graft anastomosis?
2 single-centre registries have provided important data on natural history and prognosis of SCAD.

1. Canadian SCAD registry of 164 patients (mean age 52, 92% women)
 - 80% treated conservatively initially.
 - Elective coronary angiography (>26 d) - all spontaneous healing.
 - 33 underwent PCI
 - Complete success in 36.4%.
 - > 50% had procedural extension of dissection.
 - 6 underwent CABG - 3 for failed PCI.
 - No in-hospital mortalities.
 - 2-year MACE rate 10-17%.
2. Registry of 189 patients (mean age 44, 92% women)
 • 94 treated conservatively initially
 • 10% required intervention at a mean of 4 days after initial admission.
 • PCI failure rate 53% - underscoring suboptimal results of PCI.

• **Long-term survival was excellent in both series.**

• **Significant morbidity in both series.**
 • Major adverse cardiac events (MACE) significant.
 • Primarily driven by recurrent SCAD events; average rate 5% per year.
Prognosis

Key points from contemporary series:

• Excellent in-hospital and long-term survival.
• Prolonged inpatient monitoring (up to 1 week) due to risk of recurrent events.
 • In contrast to atherosclerotic ACS - guidelines emphasize early intervention and discharge approach.
• Suboptimal results of PCI.
• Significant risk of future SCAD events.
• Recurrent chest pain after SCAD is common; often cyclical (usually premenstrual), requires careful assessment.
• No effective preventive treatment to reduce long-term risk.
Pregnancy-related SCAD (P-SCAD)

- AMI during pregnancy is uncommon.
 - ~25% of pregnancy and 50% of post-partum coronary events reportedly due to SCAD.

- P-SCAD accounts for ~10% of all SCAD.
 - SCAD should no longer be considered primarily a peripartum condition.

- Canadian Cohort Study; incidence of 1.8 SCAD per 100,000 pregnancies.
 - P-SCAD presentation more severe than SCAD outside of pregnancy; STEMI (64%), cardiogenic shock (24%), cardiac arrest (14%) and maternal death (4.5%).
 - P-SCAD more likely to involve proximal coronaries.
 - P-SCAD associated with worse post infarct left ventricular dysfunction compared to non-P-SCAD.
Pregnancy-related SCAD (P-SCAD)

- Cases tend to occur within 6 weeks of delivery – early postpartum peak.
 - Reported during early pregnancy but most are during third trimester.
 - Also late (6 weeks to 12 months) and very late (12 to 24 months) postpartum, especially in patients breastfeeding.
- Factors that may be associated with increase risk:
 - Multi-parity - structural changes cumulative.
 - Fertility hormones
 - Pre-eclampsia
- Physiology of P-SCAD:
 - Hormonal changes - may influence vascular connective tissue and/or vessel microvasculature.
 - Increased cardiac output and circulatory volume.
 - Acute hemodynamic stress of childbirth.
Pregnancy-related SCAD (P-SCAD)

- Patients should be screened for connective tissue disease and chronic inflammatory conditions.
- Risk of recurrence is significant.

Key Message:
Women of reproductive age with a history of SCAD should be carefully counselled regarding risk of recurrent events and more severe P-SCAD phenotype.
Fibromuscular Dysplasia (FMD)

- FMD is a non-atherosclerotic, non-inflammatory disease of arterial walls.
 - Abnormal thickening of vessel wall causing stenosis and aneurysm formation.
 - Can involve all arterial beds.
 - Most are women.
 - Cause unknown.
 - Diagnosis made angiography.

- Classic finding is multifocal disease - "string of beads" appearance.

- Fibromuscular ridges causing arterial stenosis alternating with arterial dilatation.
- Focal disease is less common and results in localized tubular narrowing.
Fibromuscular Dysplasia (FMD)

- First reported association with SCAD - 2005 by Vancouver group – case series of 7 women.
- Same group published results for 50 patients.
 - All screened for FMD
 - FMD in 86%
 - High pick-up rate of FMD may have been due to the frequent use of invasive angiography.
 - CT and MRA are less sensitive than invasive angiography.
- High prevalence FMD in SCAD in these series.
 - Prevalence of SCAD in US FMD registry is very low; <3%.
 - Difficult to see how will alter current management unless there is specific treatment for FMD or difference in prognosis.
Conclusions

• SCAD is an important cause of ACS.

• Pathophysiology and treatment are different compared to ACS caused by atherosclerosis.

• Early angiography should be considered in patients presenting with ACS but at low risk of atherosclerosis; in particular young to middle aged women.

• Clinically stable patients with good coronary flow, a conservative management strategy is recommended.

• Left main involvement, complete vessel occlusion, ongoing ischemia or hemodynamic instability require coronary revascularization.

• PCI results are suboptimal.
Conclusions

• Women of reproductive age with a history of SCAD should be carefully counselled regarding risk of recurrent events and more severe P-SCAD phenotype.

• Patients should be screened for FMD.

• Long-term prognosis is excellent.

• Risk of recurrent SCAD events is significant.
Thank you
SCAD – CTA and parallel angiography at presentation and 3 months (healing)
SCAD – stenting leads to proximal hematoma migration – further stents required.